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SUMMARY
“We aBsess the feasibility of a goodness-of-fit test based on an intergral of the
weighted squared modulus of the discrepancy between the sample and population
characteristic functions. The resulting statistic is therefore analogous to the
Cramer -von Mises statistic and is shown to reduce to it as a special case. A number
of properties of the test have been derived, including the asymptotic null distribution
of its statistic, It is shown that under mild regularity conditions the test is
congistent. A number of approximations to the null distribution of the test statistic
are considered, and are found to be successful in simplifying its application without
due loes of accuracy.
K;ywordm sample characteristic function, goodness-of-fit,
> weighted sum of chi-squared variates: consistency,
asymptotic distribution; rate of convergence, cumulants, -

approximate distribution.
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1. INTRODUCTION
The characteristic function corresponding to any distribution function P(x) is

detined by

®(u) = r;e‘“" dr(x) (1.1)

where iZ = -1, is uniquely associated with P (Lukacs, 1970, p. 28). Por many
purposeg it is more convenient to work in this transform space rather than dealing
directly with distribution functions. As a simple and well known example, the addition
of independent random variables corresponds to a multiplication of characteristic
functions. Similarly, the behavior of characteristic functions under location and scale
ghifte is particularly simple.

f x, Xz,..., Xp 18 a sample consisting of independent and identically
distributed random variables with distribution function PF(x), then an empirical

characteristic function ¢,(u) may be defined as

- b 1 n
bn(u) = [ elux apo(x) = & T @¥¥y. (1.2)
-® J=a
and ¢,(u) completely specifies the sample X,, X,,..., X, up to permutations. In

addition it follows almost by definition that, for each fixed u, E(e!YX]) = o(u), o

that 6,,(0) is unbiased for ¢(u). Thus by the strong law of large numbers (Rao,

1965, p. 97) én(u) is a strongly consistent estimator of ¢(u) as well as being
unbiased .

The potential applicability of sample characteristic functions in the inference
setting of tests of goodness of fit has been investigated by Heathcote (1972), Paulson
and Thomton (1975), Peurverger and Mureika (1977), Koutrouvelis (1980),

Koutrouvelis and Kellermeier (1961), Murota and Takeuchi (19€1), Csorgo and
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“
A ;3, Heathcote (1982), Bryant and Paulson (1962), Hall and Welsh (1983), Heathcote
s (1962), Epps and Pulley (1983), and Csorgo (1986). Purther references and a
¥
S review are given by Csorgo (1984).
L]

' .

::_‘_- This paper makes use of the goodness of fit statistic

,\ -
[X) i: -

R na, = n r; 1$n(U) - Go(u)IZ dw(u), (1.3)
%

)::":- where w(u) is a given weighting function. This staitstic is clearly analogous in form
-

o
&‘- to the Cramer-von Mises statistic. There will be situations in which it is more natural
. to use (1.3) than the more standard empirical distribution function (EDF) statistics.
j::::' Por example, the existence of a viable characteristic function-oriented procedure
SN
_':_'\ would be of both theorectical and computational value in tests of hypotheses concerning
g‘;l the stable distributions, some compound distributions, or in cases where under the null
B

"
3::' " hypothesis the population distribution is neither purely descrete nor abeolutely
W

W
;:E continuous. Furthermore, most of our results are essentially independent of the
[ Ra R

dimension of the population under Iinvestigation and will be directly applicadble to
o problems of multivariate goodness of fit. The multivariate case could be far more
[

N important than the univariate case because the uniform continuity of @o(u) and én(u)
_T").,‘ permits simplification in analysis of the test statistics which will not be available to
OGS
o multivariate EDP statistics.
O

W
W
Y; 2. A GOODNESS-OF-PIT TEST
Nn‘
P
e

‘;\ The problem to be considered here is the construction of a procedure, based on
i the empirical characteristic function, whereby the goodness-of -fit hypothesis

ALY

,__ Hg: P=Pg or Hg: ®(u) » dg(u) (2.1)
'~’N’
-’; may be tested against the general alternative hypothesis

S e '. ."...n..\..).
L e . ‘. . ‘(4 LY 1{.'\ - n‘;'r LAL\1 - r'\._.n- Lhﬁ-ii"h'( ;'. .-": 't“ﬁﬁ;"iﬁﬁmﬁ\ { f {hfﬁii




r%s S

[
H,: F APy or Hy: o(u) # dg(u). (2.2)
Here P is the distribution function of the population in question and Py ig completely
% specified; the corresponding characteristic functions are ¢ and ¢g respectively. The
’,
::_ formulation of hypotheges in terms of ¢ and ¢g will be more natural for our purpoees
" for we will be working for the moet part in the transform space. The test procedure
1
is bagsed on the statistic (1.3) where 6n(u) is the empirical characteristic function
computed from a random sample of size n, X,, X,,..., X,, drawn from the
population. The weighting function w(u) in (1.3) is a given distribution function,
: nondecreasing, continuous from the right and bounded, with w(-@w) = 0, w(®) = 8 > O.
b,
: The value of the constant § is immaterial and will generally be taken to be unity.
o
3 Since |¢n(u)i and [dg(u)| are bounded above by 1, the integral in equation (1.3)
_*; must converge. We will usually refer to w as a "weighting function” to avoid confusion
' with the distribution functions F and Py.
Te
2 The consistency of the test of null hypothesis based on na, is based on two
o results of Bryant and Paulson (1979).
o’
.::: Lemma 2.1
-:;
The quantity r l&n(u) - ®(u)(? dw(u), where én(u) is the empirical
-®
:: characteristic function based on a random sample of gize n drawn from the distribution
:'.'_ whoee characteristic function is ¢(u), hag mean and variance given by
e . .
E r {®p(u) - &(u)l? dw(u) = a r {1 - I&(u)l2) dw(u) (2.4)
' -® -0
" ana
\ var r I&n(u) - ¢(u)l? dw(u) =
-0
"
“r 2(n-3) 2 2 L, n-1 2 2
=y I%(u)i® dw(u)) 53 (Io(u+t) |2 + I&(u-t)|2) dw(u)aw(t)
- - -® -
-"
o 2(n-2) ’ "
- -® _nRO(O(U'*t)O (u)ox(t) + &(u-t)e*(u)e(t)} dw(u)dw(t). (2.5)
L
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o Lemma 2.2

e .

3 Let na, be defined as in equation (1.3) where ¢n(u) is based on a random

‘\-: sample of size n from the population whoee characteristic function is ¢(u). Then a,
o

2y

‘-CE: converges to the quantity r:' I®&(u) - @g(u)i? dw(u) with probability one.

l... y

:..,) Since w(u) is strictly increasing it places poeitive mass on every nondegenerate

K

-1 u-interval and this implies that the r f&(u) - og(u)i? dw(u) is zero if, and

-2 -®

k) )‘

- only if, P(x) = Po(x). By Theorem 4.1 na, converges in law to a distribution
SO function G. Thus the goodness-of -fit test based on na, will have a rejection rule of
B the form

Reject Hq if and only if na, > C,"

.
:: where c, is a critical value chosen so that asymptotically the size of the test is fixed
:\ at a.
.'\:"\
e If P £ Py, some x, than a, will converge strongly to a constant other than zero
..
1:.:-;. as n > ®» 80 that na, will almoet surely diverge up to . This argument is summarized
o as
o
M il
' Theorem 2.1 The goodness-of-fit test of the hypothesis Hg: P s Py based on the
D
‘_:'{: statistic a, of (1.3), where the weighting function w(u) ie strictly increasing, is
g ,,,-:*,,
.
"': congistent; that i, for any alternate distribution P # Pp, the power of the test
Pt
f-jj::: approaches one as

NG n > o
Tests of fit based on only a finite number of u-values cannot be consistent since
the values taken on by a characteristic function at a finite number of u-values do not

characterize a distribution function. The assumption in Theorem 2.1 that w(u) be

strictly increasing may be relaxed when the population of interest possesses an |
\




« >

ot
l.$l

\$ analytic characteristic function for then a characteristic function, and hence its
" ‘_:

"‘~ distribution function is uniquely determined by its values over any non-degenerate
u-interval (Lukacs, 1970, Chapter 7).

r

Y

:ﬁ The statistic a, is similar in structure and actually reduces as a special case to
*

DO the Cramer-von Mises statistic

v )

)

A = r (Pa(x) - Pg(x))2 dPg(x) (2.6)
AN -®

(s

o for testing Hg: P = Pp, where Po(x) is the completely specified distribution function
fad and P,(x) is the sample distribution function corresponding to the random sample X,,
-

:'.'_ Xz,..., Xp putatively drawn from Fg(x). We now sketch the proof of this assertion.
g

o On the Hilbert space L2(0,1] of all square-integrable complex valued functions
” on [(0,1) the inner product of two functions h and g is given by (£, g) =

l\I

‘.'-_ 1 .

NG Io f£(t)gr(t)dt. The set of functions (e'2Tkt x = 0,1,...} is a complete

N orthonormal gystem on L2(0,1].

i

s By means of the probability integral transformation, (2.6) 18 reduced to the form
N 1

o = | shct) at = jigq112 (2.7)
e o

2

1'
B where g,(t) = Gh(t) - t and G,(t) 18 the sample distribution function corresponding
t t
"':-j to the transformed sample Y,, Y,,..., Y,. By determining the Pourier coefficient of
t

.«: gn(t) with respect to e!2Tkt and utilizing Parseval's equality in (2.7) it may be
Agtt

ol

P shown that

)-
ﬂ).

50 - - 2 ® ~ - - - 2

: ©f = 1im lep(u) - co(u)l + lea( -2mk) cg( -2mk)| (2.8)
3 w0 u k=-m0 4R 2

ooty k#0

a2 )

s = r Ica(u) - cg(u)i2 dw(u), (2.9)
-.f_- ®
M
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where cg(u) is the characteristic function of a random variable on (0,1] and
én(u) is the empirical characteristic function associated with the Y; and w(u)
is a step function whose definition is clear from equation (2.8). The Cramer-von

Mises statistic is thus a special case of na,.
3. ASYNPTOTIC DISTRIBUTION OPF THE STATISTIC nafP)

We first consider the distribution of
P .
nafP) = n £ len(uc) - &(u)l? wluy), (3.1)

a discrete version of the na, of equation (1.3). The ug in (3.1) are pre-selected
abecissae and the w, = w(uyg) are given non-negative weights. There are at least two
good reasons for considering nafP). Pirst, it will turn out that the asymptotic
distribution of ns, may be obtained in essentially the same manner as that of naflP) of
(3.1). Thus the simplified problem will serve to motivate later considerations.
Secondly, there are situations of practical interest where ¢(u) and w(u) are such that

the integral in equation (1.3) cannot be explicitly evaluated. If, for example, the

degired weighting function were dw(u) = exp(-u?)du, then in equation (3.1) we might
choose the uy and wy to be the abecigsae and weights associated with the Hermitian

qQuadrature of order p (Stroud and Secrist, 1966, p. 217).

Y We shall always take p to be even and u, = “Up-k+yrr Wk = Wp.yey, k=1,2,...,p.
- . .

7 Since wi = Wp.x4; and (Re ¢ - Re ¢)(Im ¢ - Im ¢) is an odd function we may write
ol

g (3.1) as

oy ) P

e nafP) = n L (¥a(u) - y(u)i* w. (3.2)
i

e

where y(u) is the transform, y(u) = Re ¢(u) + Im®(u), and y,(u) is its sample

"o . it e e e ite N ettt te te e - ~ - . o\ R S
e A e e e T I e e e e e T e .-.r Rt -‘.r.(\t ERRT oy
AR SRR e A e e a I}.L-.A-..*_«-... <o G £ N A A
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it

-

counterpart, yn(u) = Re ¢n(u) + Dm &p(u).

« Some rearrangement gives

N [

= N noLd

‘O nafP) ='{|n" an"'t l}={t (3.3)
‘.' .

\ where

<

‘.‘ - n T

- th=n YL 8y, 85 = (815, 823,..., 8py),

s =1

J.I

’ and

:l': By = (cos ukxj + gin ukXJ - Re ®(uk) - Im &(uy)) Vk.

N

L)

.‘ The px1 vectors 8y are independently and identically distributed with mean
::: vector 0 and pxp covariance matrix M = (myy) given by

3

. myy = K(uy,uy )(wWywg )¥ (3.4)
9

- where, as is easily shown,

:: K(u,v) = Re ¢(u-v) + Im &(u+v) - (Re &(u) + Im (u)llRe ¢(v) + Im &(Vv)]

E = n cov (¥Yn(u), ¥a(¥)).

_v

‘1_' Since M 18 a covariance matrix it is symmetric and positive semi-definite of
]

: rank r € p. We may therefore extract p real orthonormal eigenvectors Cgq,

g q=1,2,..., p, vhich span p-dimensional Euclidean space and satisfy

.:1

::Z SE!Sk = AgBqk» 1 €q, kK €p (3.5)
7" where 8, 18 Kronecker's delta and A,, Az,..., Ap are the non-negative

(s,

~ eigenvalues of M which are arranged 8o that Ay, Az,..., Ar are positive while
v

:ﬁ Ap4y = ..o = Ag =0, Referring the inner product of equation (3.3) to the

o

orthonormal basis (c,, Czv:-:» Cp) gives

>
.

o5

i

N ?

("

(9

¢
1%

",
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o
1
\" r T
n nafP) = L (cq tn)? (3.6)
-0 Q=1
M
:j::;: since the random variables c! t, are degenerate at the origin with prob-
» ability one for q > r. Prom (3.6) and the definition of t,,
A
Y

\ P 4
) r n

: 1
Mp)=EA[- }:z} (3.7)
«.'.." " Q=1 Q n’s j=1 Q)
N\ 'l‘
s
k1 ‘..-
RS where |
: |
o e 8y

Zqy = +y Q9 =1,2,..., 3 3 =1,2,..., n.

A A?
\~-
\..u
BT
S The rxl vectors £; = (Z,y, Zz4,..-, Zry)', J = 1,2,..., n, are independent

and identically distributed with mean vector 0 and, from (3.5), covariance

n
matrix I. Since n-% Jt, Zy converges in law to N.(O, I) (Rao, 1965, p. 108)
2 =3
= we find that naf?) is asymptotically distributed as
e ] z
K - t A x (3.9)
ki qza ¢ 7Y
A
s where xg are independently and identically x2 distributed on one degree of freedom,
- \:
0 The characteristic function of naff) is
A
"n"z i T _
D exp( 3 L tan 1 (2aqu)) r "
o c(Pl(u) = q=1 » | £ tan™t 2aqui < 3, (3.9)
A q=1 2

: \J.n r
9 0 (1+4A3 u?)¥%
";v—.' q=1
oo
nn" r
. = { 0 (1-2rqiu))¥ (3.10)
_:Jl,_. q=1

= |I - 2uiM|"Y (3.11)

The proper branch of the square root in (3.10) is specified by (3.9).

P .
Equation (3.11) may be determined directly by observing that n [ (ya(u) -
J=
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¥(u))? is distributed asymptotically as a sum of correlated x* variates

(Lukace and Laha, 1964, pP. 40-43). We have thus proven

Theorem 3.1
The goodness-of-fit statistic nafP) defined by (3.1) has, when the null
hypothesis Hg 18 correctly specified, the asymptotic distribution whoee characteristic

function is
.
c(P)u) = (qu(l-ZAqiu))"i = |I - 2uiM)”¥ (3.12)

where M is the covariance matrix whose elements are given by (3.4),

AysAzy...y Ap are the positive eigenvalues of M and r<p is the rank of M.

The determinant in (3.12) may be expanded (Pogorzelski, 1966, pp. 31-32) in

terms of the covariance kernel and the weights w, as

AZ P 14
L L C(U,,UK)V,VR

[
IT - A MI™% = 1-A L K(uyq,uq)wy + —
~ ~ 121 ( b ’) b] 21 j=1 X=1

p P
e C ‘o n 3.13
TR AR M PR PLERERS PR AT (3.13)

where we have get A = 2ui and

K(ug;,u,) . . . K(uy,ug)
C(uy,uz,..., Ug) = . . (3.14)

K(ug,u;) . . . K(ug,ug)

Equations (3.12) and (3.13) are suggestive of the results that we may expect when
we let p (as well as r) tend to infinity in such a way that (3.1) becomes the integral

expression (1.3).
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K 4. THE ASYMPTOTIC DISTRIBUTION OF na
o
o, This section contains our main result concerning the limiting distribution of the
o
d ;: test statistic. Some preliminary lemmas are stated without proofs. The main
K2
' reference for this section (and Section 6) is Dunford and Schwartz (1958).
i
'.‘::".: Define the function
YOS
%
:;i:- 85(u) = cos ux; + sin uX; - Re ¢(u) - Im &(u) (4.1)
o
. for § = 1,2,..., n. These processes are independently and identically distributed
-
:}.; with mean function E(®j(u)) = O and continuous covariance kernel K(u,v) given at
-.;;:Z; (3.4). Let t,(u) be defined by
P .I
n -
R ta(u) = n"% L sy(u) = n¥ (yp(u) - y(u)) (4.2)
S0 j=2
:n‘?‘
A8 that
\(: 80 a
- hap = r’o ti(u)dw(u), (4.3)

U ""."',l".’ .

Ay

the squared norm of t,(u) in L%(w), the Hilbert space of functions square integrable

with respect to w(u). We ghall employ Parseval's equality to expand na, of (4.3) in

xf terms of a complete orthonormal system in L#(w) congisting at least partially of the
‘A
'::j.:» eigenfunctions of the integral operator
o
e K y(u) = roK(u.V)Y(u)dV(v)- (4.4)
e Pirst we need some results concerning this operator.
g

il Lemma 4.1
o There exists a finite or countably infinite orthonormal system of eigenfunctions
\::"-:
'_:;: fq(u), 9 = 1,2,..., of the integral operator K of (4.4), where fq(u) is associated
'v‘.'-
o> with the eigenvalue Aq, which together with an at most countable set of functions nq(v)
e
B~ L
) :_:-
":'_'.\. 10
AR
W
0

i

IR ST A ITRS
T ) .0\
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RN

L) r:‘K(u,v) nq(v) aw(v) = 0 a.e, (w), q=1,2,...,

form a compiete orthonormal system in L3(w).

Thege asgsertions follow from the theory of linear operators of the Hilbert-Schmidt
type in Hilbert space (Dunford and Schwartz, 1958, p. 1012, and Schmeidler, 1965,
g p. 57).
~ Lemma 4.2

The real and poeitive non-zero eigenvalues A,, Az,..., of the selfadjoint

o
A ]
Y

A
XX

integral operator K of (4.4), arranged in decreasing order and repeated according to

{.l’.lll

their multiplicity satisfy

= = - 2
£ Aq r:” K(u,u)aw(u) r:‘ (1 I(u)i®)}dw(u) < .

Lemma 4.3

The Predholm determinant, defined by the power series

LN W 4 _
*.'f_-. D(A) =1+£(
QYN j=1

Al
31 JRJ Clug,uz,..., Uy Yaw(u)... dw(uy ),

J { where C(u,,u;,...,uy) is defined in (3.14), is abeolutely convergent for all complex

NN A and may be expressed as the infinite product
¥ @™
“ 2 D(A) = 1 (1-AgA),
a=1

. the latter converging abeolutely and uniformly for all A in any bounded region of the
o complex plane.

Because the kemel K(u,v) is real, the real and imaginary parte of any
‘-_' eigenfunction fa(u) associated with the eigenvalue ), are also eigenfunctions

o associated with A,. The complete orthonormal basig (fq(u), ng(u), 9 = 1,2,...} of
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temma 4.1 may therefore be assumed to be composed of real functions, and for
simplicity we will take them as such.

Our primary result will be given; in the proof we will assume that the number of
eigenvalues A\q is infinite. If this is not the case (as in Theorem 3.1) the required
alterations will be obvious.

Theorem 4.1

The goodness-of-fit statistic na, of equation (1.3) has, when the null hypothesis

Hp 18 correctly specified, the asymptotic distribution whose characterigstic function

c(u) is
@®
c(u) = I (1-2Aqiu)"¥ = D" ¥(2u1)
9=1

where A,,A;,..., are the poeitive eigenvalues of the integral operator given by
equation (4.4) with kernel K(u,v) defined at (3.4). D(A) is the Fredholm

determinant associated with this operator, defined in Lemma 4.3,

Proof
Using Parseval's equality, we expand the squared norm In equation (4.3) with

regpect to the complete orthonormal system {fq.(u), ngq(u), 9 = 1,2,...}. This gives

@ . £ )2 ™ 2
na, = ’ + th, . 4.5
n qgl( ne £q) qgl( ne Ng) ( )
Now by Lemma 3.1 we have E(ta(u)) = 0 and Cov(th(u), th(v)) = K(u,v).
Therefore, use of Pubini's theorem gives, for q = 1,2,...,
E(t,, ﬂq) = E(ty,, fq) =0,
E{(th, nq)*} = 0O, (4.6)
E{(tn, £q)%) = A f = Aq. 4.7
{(tq q)°} q r:; a(u) q ( )

12
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300 Prom equations (4.6) and (4.7) we have

':'E [ ] 2 ® 2 [ ]
e L E(t,, £o0)2 + L E(tpn, ng) = L A

; o=t Y Tem M AT T e O

x‘.\

X which we have shown to be finite. Accordingly (Rao, 1965, p. 91), the sum in
i

\}\ [ ]

:' equation (4.5) is convergent with probability one and E(na,) = ;:1 Aq-

—
e

- |"'
)l‘l‘ll;/"r_

Each of the terms (t,, nq)’- in equation (4.5) is, with probability one, degenerate at

Y,

PLIA
Pl d

the origin. Since there are at moet a countable number of such terms, we have that

with probability one na, may be expressed as

N

S0

S [ ]

o nap = qgi(tn. £q)2. (4.8)
';4 As in the proof of Theorem 3.1, let

o o £y

A,

e Zq,3 = 1 ¢, q=1,2,..., )=1,2,...,n,

A% &

e
P go that

t.':':-_' 2
B, " - @ 1 n

o nan = L Aq [,,1 =L zq.:] : (4.9)
, Thus, E(ij) = 0 and
S 1

b Cov(2qy, zqc,) = (-A_qTq'_)’i ® faq(u) [ Qx(u,v)fq-(v)dw(v)] dw(u)

- - -

et

Ag?

i " £q(u)Eq (u)AW(U) = Bgq- -

2 (Aqhg')¥

S

&
',',_: If we now define the truncated sums

3 .h gr) r 2 r X n z

ro- = thns = A - .
o

et
v .7

r=1,2,..., it follows by Theorem 3.1 that na{") is asymptotically
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r
distributed as Q(7) = ¢ Aq x§, a weighted sum of independent x® variates
q=1

one degree of freedom, with characteristic function c(r)(u) given by (3.10) with p=r.

Let P, be a sequence of distribution function converging to a distribution function
P on the continuity set of . This mode of convergence is denoted by P, => P. Let
G, be the distribution function of na,, Gf") the distribution function of na{") and
G(r) the aistribution function of Q(") whoee characteristic function 18 c(")(u). We
have shown that GL") => G(') for fixed r. An application of the continuity theorem
(Lukacs, 1970, pp. 48-50) and Lemma 4.3 implies that G(r) => G.

The proof is completed by comstructing a sequence (r,, h = 1,2,...} which

diverges monotonically up to +x and showing that G:" => G which will imply
that G, => G (Rao, 1965, pp. 100-102). Since the distribution functions G{(")(x)
are continucus, we have by Polya's theorem (Rao, 1965, p. 100)
(r) . g(r) =
1lim sup I1G, “(x) (x)| = 0.
Mo X

Hence we can define integers qp, by qp, = least integer > qp-4 such that

1Ga(x)(P) G(P)(x)| < 2°P for all n a qp, with q = 1,2,..., Qg = 0. We than

take

n =P for n = qp + 1, qp + 2,..., Qp+1,
n=1,2,..., p=1,2,...

Then for any x and p

o .
o 1G57"Xx) - GPXX)I < 35 , N o= QpHl, Qp2,..., Qper)  (411)
l":Y"

b Let >0 be given, and let x be any point of G. Since G(') => G, there
\; exists an r* such that

R
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523
; 160" (x) - &(x)| < ;—' for all r a r», (4.12)
Sy
.!la ‘
) Without loss of generality, take rr large enough so that —:; < ;- .
2
o
:T::: Let n* = Q.x+1. Then for any n & n*, there exits an # a r* guch that
-
;"‘ Qr + 14néq(741). PFor such n we have, by equation ( )
oL
s 168" Y(x)-G(F )Xy « 3 & = < &
- 2r 2r
T
s while from equation (4.12),
s 16¢F )(x) - a(x)l < 3 .
'l. 2
N
,' Thus
w
. 68T (x) - arx)l < 1650 (x) - G(EN(x)1 + 16(E)(x) - a(x)| < e
;:-'_:: for all n » nx, It follows that Gs,r"’ =>» G, which in turn implies that
_;::: Gp => G, and go the theorem is proven. ’
b !
o The correspondence between Theoremg 3.1 and 4.1 is clear. Although it was
-1.',"
o assumed in Theorems 3.1 and 4.1 that the underlying population was univariate, the
n:,\
‘ N proof would still go through with only notational changes if the populations were
5 multivariate. Note that the function w(u) need not be absolutely continuous and the
:'.':: integral in the definition of the na, need not be restricted to a finite support. Por
_i: example, the gymmetry statistic nT, of Peuerverger and Mureika (1977) is of the same
3 “;‘ general form as na, and Theorem 3.1 may be used to derive the asymptotic
. distribution of this statistic under the null hypothesis of population symmetry.
5
7 5. SPECIAL CASES AND EXAMPLES
S
1 -J
o
B The results of Theorem 4.1 will be illustrated in this section by applying them in
e,
:ij: 15
»a
(]
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several specific examples.
(a) Suppose the hypotheeized distribution is discrete and that under Hp the

population random variable may take on the values x,, X,,..., Xy with positive
[ ] L]
probabilities p,, Pyy..., Pas q!=: Pq = 1. Then Re &(u) =q]=:19q cos (uxq) and
3 8
[ ]
Ind(u) = 219‘, sin(uxq). A little aigedra will reduce the kernel K(u,v) at
q.
equation (3.4) to

[ ]
K(u, = Pq »
(4,9) = L 8q(u)8q(¥)Pg
where

8q(u) = cos(uxg) + sin(uxg) - Red(u) - Imd(u).

Thus the kernel is, in this case, degenerate and it may be shown by an argument
gimilar to that given by Smithies (1950, pp. 36-38) that the nonzero eigenvalues of

K(u,v) are precisely those of the matrix product AP, where the (3,k)'" element

Ofﬁil

g = [ s(wmuiawu) 163, k<,

and P = diag (P,, P,,..., Py}.

It iz seen that the situation here is sgimilar to the one considered in Theorem
3.1. The asymptotic distribution of na, is that of a finite sum of independent
weighted chi-squared variates, the weights being the nonzero eigenvalues of

AP.

The case described above applies whenever data have been grouped; it also
indicates a poesible approximation method to be used when the eigenvalues of the

kemel K(u,v) are not easily obtained.
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%: (b) Suppose that under the null hypothesis the underlying population has a
1Y
et Cauchy distribution with location and scale parameters 8 and ¢ respectively, so that
~. A the population characteristic function is ¢(u) = exp(i8u - olul).
"
I. ‘-_:: Suppose the weight function
\;'
hay u
W wu) = a [ e'““'dt
{ ) -®
"
>
, is chosen, where o is a given positive constant. Then na, may be explicitly
:.!:}n integrated and is given by
Y n n
L nan=: f —2_ - e L. (5.1)
e " k=t X X 1=1 (140/a)® + [x,-a] 1+ 20/a
e ~ ~x
N
ol where X, ,X;,..., X, 18 the random sample drawn from the population. The
& -
«.” variates X-8 have, if the null hypothegis is true, the Cauchy distribution
¢“4 a
£42 with location parameter zero and gscale parameter y = g . Therefore, the
5 a

null distridbution of (5.1) depends only on y, which we will here take to be

unity for simplicity. We may thus assume that ¢(u) = e~ /Yl and w(u) =
u
I e !tlat. Then the covariance kernel K(u,v) (see 3.4) is equal to
-®
K(u,v) = e~!u-vl . o=lui=ivl | (5.2)

It may be shown that the asymptotic characteristic function of na, is given by

_® 16iu) "2
c(u) = D¥(2ut) -921[1 —J{’-] (5.3)

where j,q,, 8 = 1,2,..., are the posgitive gzeros of Ja(u), the Bessel function of the

first kind and order 2. Equation (5.3) characterizes the asymptotic distribution of

nap, as that of an infinite sum of exponential deviates having means 16/3%,. The

zZerocs j,, have been tabulated for 1 € 8 < 20 in Abramowitz and Stegun (1970,
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p. 409).

(c) The ability to analytically obtain the eigenvalues associated with the
asymptotic distribution of nap, as in the previous example, is unfortunately rather
unusual . A more typical sitaution is illustrated by assuming that the hypothesized
distribution i8 normal with mean 58 and variance o2, The postulated population
characteristic function is then ¢(u) = exp(i8u - %o0®u?)., If dw(u) =

a exp(-a%u?) du, a > 0, i8 chosen, then equation (1.3) may be integrated to yleld

VA 2/ 2ra "
nan = 4~ J,E=1 exp( —( Xy -Xy )2/4a®) - (o¥+2a%)% JEIQ:P( -(Xy-8)2/(20%+4a?))
n 1 a
+ (0% + a2)% ° (5.4)

It is possible to obtain the asymptotic characteristic function of the statistic na,
of equation (5.4) under a correctly specified null hypothesis. As an example, when
a is choeen equal to o the asymptotic characteristic function c(u) of na, may be

shown to be equal to

™ [ -]
-2bgiu)-4 4] (—£)/(1-2bg2%1u))- )
ot 1-2oat1u) T (142410 -Eo[ n] (~£)%/(1-2bg2%1u)}) (5.5)

where b, d, f and g are certain constants whoge values are not important to the
discussion.  Unfortunately the characteristic function c(u) i8 not readily inverted i
numerically, and so this result seems to be of little practical value. What are really
needed are the values of the weights associated with the repregentation of the
asymptotic distribution of na, as a weighted sum of independent chi-squared random
variables, and these are not made evident by formula 5.5,

Portunately, it turns out that the asymptotic distribution of na, in the case where

the underlying population is normal may be accurately approximated by the asymptotic

distribution of a quadrature-type sum of the form considered in Theorem 3.1. Such
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an approximate procedure is easier and more accurate than the numerical inversion of
the expression in equation (5.5). As in example (b) the null distribution of (5.4)

depends only on the ratio y = g/a, 80 we may take without loss of generality ¢(u) =

exp(-!gyzu‘) and dw(u) = exp( -u?)du go that

na, = n r:' [®n(u) - &(u)i? e~v? au. (5.6)

The form of equation (5.6) suggests that the asymptotic distribution of na, be
approximated by that of (3.1) where uy and wy, k = 1,2,..., P, are respectively
the zeroe of the Hermite polynomial of (even) order p and the associated Hermitian
quadrature weights. These have been extensively tabulated by Stroud and Secrist
(1966, p. 217). The asymptotic characteristic function of nafP) is given in Theorem
3.1, where A{P), q = 1,2,..., p, are the eigenvalues of the pxp matrix M(P) whose
(q, q')t" element is, from (3.4)

al?)
®aq

-y*(uq-uqr)?/2 _  -r*ul/2-y*u§./2

= (e )(wqwq:)" (5.7)

To aid in the comparison of the distribution of na, and naf{f , we tabulated the
valuesoftheﬂmfmrmmlan&dtheasynptoucdistnbuuomofmsp)andot‘mn
for various values of p and for y ranging from s to 3. The )" cumulant of nafP) is

given by
P
k§P) = (3-1y12dtr £ (APHY, g = 1,2, (5.9)
Q=

which follows from the characterization of nafP) as a weighted sum of independent
chi -squared random variableg each with one degree of freedom, along with the
additivity of cumulants. The cumulants Ky =1,2,..., of na, are calculated by
formulas which will be provided in Section 7. In particular x, and k, can be

obtained by the results of Lemma 2.1.
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-\u" Our computations indicate that the first four cumulants of nafP) reach their
A
': v asysptotic values for y = - = 4 when p=12, for y=1 when p=20, for y=3/2 when
-.: p=36, and for y=3 when p=64&. The cumulants of najP) are rapidly convergent to
LN
:.:-\ those of na, if the ratio y = d/a is not large. When y is large the kernel K(u,v)
Ty
l_) becomes poorly behaved and is therefore difficult to approximate by M. Por y
| relatively small and p sufficiently large the asymptotic distribution of nafP)
provides a good approximation to the distribution of na,.
e The use of approximating sums of the form given in equation (3.1) to determine
,,. the asymptotic distribution of na, 18 not always as effective as the preceding remults
Fae
':Eﬁ might lead one to suspect. Referring back to example (b) where the hypothesized
population was Cauchy with scale parameter one and the weighting function dw(u) =
; exp( -{u|)du was employed in the definition of na,, it is reasonable to approximate
_ na, by use of a quadrature sum of the Laguerre type (Stroud and Secrist, 1966, p.
,_,-:.' 253). The asymptotic distributions of such sums, however, converge to that of nap
1\ rather more slowly than was geen in the case where the underlying population was
o normal. This is to be expected, since the covariance kernel K(u,v) corresponding to
the Cauchy distribution, given in equation (5.2), i8 not everywhere differentiable.
__ Thus by approximating the distribution of na, by that of a statistic of the nature of
",,x na{P) of equation (3.1), we are essentially replacing the problem of obtaining the
k positive eigenvalues associated with a homogeneous integral equation of the form
Lo

3
*
v

"
ey

Ay(u) = r:nx(u.v)}'(v)d\'(v) (5.9)

e

e .

with the problem of finding those corresponding to the linear system

p
AYQ = 21 K(UQ,UQ')VQ'YQ' q = 1,2,..., p. (5.10)
q'=

20




-::: It cannot be expected that the linear system accurately approximates the integral
‘:\

N equation unless the kernel K(u,v) is smooth.
h ]

= 6. INVERSION OF THE CHARACTERISTIC FUNCTION

._;.‘

K

o The distribution of the goodness-of-fit statistic na, is given in terms of its
'

:-'; characteristic function c¢(u) by Theorem 4.1, but in order to apply this statistic to a
_\-l

- given testing situation, an inversion of the characteristic function is required to
W produce the necegsary critical values. The problem of inverting c(u) is sgimilar to
S

.,

o that considered by Durbin and Knott (1972) in their analysis of the residual sums Bp
.-

s of the Cremer-von Mises statistic and the method of solution outlined here is
o

egsentially identical to their procedure, which is based on the work of Gil-Pelaez
28 (1951) and Imhoff (1961).
.- The asymptotic characteristic function of na, ig, from Theorem 4.1

-

N ®

..f; ® exp{% L tan-?! (2Aqu)}

) c(u) = nl(l-ZAqiu)"f = a=1 . (6.1)
Sen q= @

) +422u? k
) Qg (1+4A§u?)

-:‘:. Denoting by G(x) the asymptotic distribution function of na, and making the
o gubstitution 2t = u in the inversion formula of Gil-Pelaez (1951), leads to the
»

N

approximation (Imhoff, 1961)

o

T p
- 1 sin{s L tan"i(Aqu) - gux}
e &(x) =y - =1 du (6.2)

Ui p

@ 0 u (1 + A% u?)¥
w Q=1
WY
b
) -~ p-1

.Y where Ap 18 adjusted by setting it equal to E(na,) - [ Aq 80 that a match

q=1

o 21
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of the expectations of the two sums is8 effected. The integral in (6.2) is evaluated
by Gaussian quadrature with repeated interval halving until the error, based on
succesgive {terations, is acceptably small. Expression (6.2) can be used to compute

the exact values of G(x) = Pr{na,sx}.

7. APPROXIMATIONS TO THE DISTRIBUTION OPF na,

T™he results of Sections 2, 3, 4, and 5 make poesible the application of the
statistic na, to tests of goodness-of-fit; ite distribution under a correctly specified
null hypothesis has been ascertained in terms of its characteristic function, and a
procedure by which this characteristic function may be inverted has been presented,
so that the critical values on which the hypothegis test ie based may be calculated.
Even 8o, from a practical point of view these results are unsatisfactory; it has been
seen that, in order to obtain the characteristic function of na,, the eigenvalues of a
certain integral operator must be determined, and once this has been done a numerical
integration is required to perform the necessary inversion. (This is not the case for
Theorem 3.1.) Of course, if the proposged testing procedure were to be used only in
a limited number of more or less typical situations this would cause no difficulty, for
then tables of the critical values of na, relevant to thoee sgituations could be
prepared. A goodness-of-fit test based on the empirical characteristic function
should, however, be applicable to a wide range of problems precisely because it ig in
unusual circumstances, where the standard tests are not applicable or else can only be
employed with aifficulty, that such a testing procedure would be of greatest value.

It ie clear that reasonably sgimple and yet accurate approximations to the
distribution of na, are requ.red. It will now be sghown that certain approximations,

formulated in terms of the cumulants of na,, meet these criteria. Simulation results
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A
.‘§ presented in this section indicate that the convergence of the distribution of na, is
4

; quite rapid, implying that our results are of practical use for moderate sample sizes.
e The iterated kernels K,(u,v) associated with the kernel K(u,v) are recursively
‘\
- defined by K,(u,v) = K(u,v) and

" Kj(u,v) = r; Ky.s(u,t)K(t,v)dw(t), 3 » 2.

- R
& It is ghown in Dunford and Schwartz (1963, pp. 1085-7) that

2 o

ﬁ] = r xJ(u,u)dw(u) = L Aa: for jJ » 1,

o - q=1

3

- and

e ®

- o(A) = exp {- £ pyaizy

L J=1

- for all IA| sufficiently small. Since from Theorem 4.1 the asymptotic characteristic
Cg

% function c(u) of na, i8 given by D %¥(2ui),

]

® 1

c(u) = exp{’; L B,(zui)j/jj .

in j=1

i

Al

i Pinally, this gives the cumulant generating function, valid for all lu| sufficiently small
ks (Cramer, 1946, pp. 185-6),

_)

* @® ®

[ log c(u) = ¥ jglﬁj(ZUU’/J = L xy(wi/an.

Equating coefficients of u) then yields

éf Ky = (3-1)1 2372 gy . (7.1)
o If the weighting function w(u) in equation (1.3) is chosen so that na, can bde
: explicitly integrated, as in examples (b) and (c) of Section 5, then the evaluation of
: the first several integrals in S5y may often be performed by straightforward, if
vy

o somewhat tedious, calculations. We will subsequently need expressions for the

.,
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b asymptotic cumulants so derived for (b) and (c) of Section 5. We record the results
YN
Y
o for the Gaussian case only.
.\:,. (a) If the underlying population is normal with mean 8 and variance o, and
s
::.j:l: dw(u) = a exp( -a*u?)du, a > O, then, putting y = 5 ’
V)
o Ky = VI (1-(r2+1)°Y) (7.2a)
_:_::': Ky = 4M((BY2+4)7 - 2(3y*48y2+4) Y + 2(y241)74) (7.2p)
N
Ky = 163/ 2((9y*+12y24+4)" ' - 3(2y5410y4+12y2+4)7Y (7.2¢)
5
13 + 3(3y%+11y44+12y344)7Y - (4yP412y444)7N)
o
'_“. Ke = 19272 ([4( y2+1)(2y2+1)%1°2 - 4[(3y242)3(¥242)2 - &y*(y2+1)2)°%
\.-
:.'_:‘_.j 4+ 20( Y241 ) (& y2+1)2-2y4)¥1"1 4+ 20(3y2+2)(y2+2))1°2 (7.24)
N
f;-_:_: - 20( Y241 )((3Y242)(¥y242))¥1°% & (2(y2+1)1°2)
oS It eeems natural to approximate the mnull distribution of na, with that of a
N
{2 weighted chi-squared variate, or perhaps the sum of several such random variables,
')n
"o,y
"i the weights and degrees of freedom associated with the approximating variates being
)
chosen in such a way that the first several cumulants of na, are matched. Three such
.-‘f procedures have been investigated:
e
1S
) (a) Patnaik's (1949) two-cumulant y? approximation
- The null distribution of na, is approximated by that of the variate Q = axf; a
S::'.:‘, and v are determined by matching the first two cumulants of na, with those of Q.
Lind This requires a = x,/2x,, v = 2x¥/x,. Then, given any x > O,

P(na, & x) = P(x2 & 3—%‘*)-

24
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(b) Pearson's (1959) three-cumulant y? approximation
The approximating variate has the form

n=(x¢-v)l+k“
x,

where here x2 is a chi-equared variate with v = 8x}/x% degrees of freedom go that

na, and ¥ have the same first three cumulants. Thus

~ ‘KI
P(na, € x) = P(x* €y), ¥y = (x-x;) ~ +v.

(c) Sum of two independent weighted chi-squared variates

Let the approximating random variable be
Z = a,x} + axi (7.3)

where xi and xi are independent and have chi-squared distributions with v, and v,
degrees of freedom respectively. Equating the firet four cumulants of 2 and nag
requires that

a,v, + av, = K,, 2a?v, + 2aiv, = x,,

(7.4)

sajv, + sajv, = x,, 48atv, + 48afv, = x, .

Some algebra will show that the values of a,, 3,, v, and v, satisfying (7.4) may be

obtained by taking a, and a, to be the solutions of the quadratic equation

(BF - B,85)a% + (8,8, - ByB3)a + (B} - B38,) = O (7.5)
with
v, = gﬁ:ﬁ_;_gﬁ__ v Vp = 25_;_gﬁ:i__ } (7.6)
a(a, - a;) a,(a, - a,;)

and B; determined from (7.1).

In every situation to which this approximation has been applied, equations (7.5) and

25
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(7.6) have yielded real and positive values for a,, a,, v, and v,,

Direct inversion of the characteristic function of Z, in (7.3), gives, for v, +
vy > 2 (Gradshteyn and Ryzhik, 1965, p. 320, 3.394-7), an expression for the
density of Z which may be integrated termwise and rearranged to yield the distribution

function Gz(x) of Z as

¥ ® K
_ (ay/a;) F(s(vg+2K)) [, a, x
Gz(x) = —}.&gﬁ— R [+ x;] Vo, 4v 42K [_a;] (7.7

where V,(-) is the distribution function of a chi-squared variate with v degrees of
freedom and a, is the smaller of the weights a, and a,. The above development
allows one to approximate the distribution of na, by P(na, ¢ x) ¥ Gz(x).

If the underlying population is specified to be normal with mean 8 and variance
62 under the null hypothesis, and if dw(u) = oexp(-afu?)du is chosen in the
definition of na,, then equations (7.2) mey be used to compute cumulant matching
approximations of the three types that have been described for the null asymptotic
distribution of the test statistic. Results are presented in Table 1 for the case where

a
x

approximating quadratures as in example (c) of Section 5. Quadratures of order 48

Yy = = 1, Also included is the distribution of na, calculated by means of
and 64 yielded identical results for all entries in Table, which are thought to give the
true distribution of na, to within + 10°¢,

It can be seen that the distribution of the weighted sum of two chi-squared
variates provides an excellent approximation for the asymptotic distribution of nag,,
particularly for large x. The Pearson approximation gives results which are almost as
good in the upper tail, although as must be expected it is not very accurate in the
vicinity of the origin. The Pearson and sum of 2x2's approximations appear to be

adequate for most practical purposes, at least if the desired size of the test is not
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unusually large.

is generally preferable since the latter requires only slightly more effort.
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Patnaik's approximation is inferior to Pearson's approximation, and
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TABLE 1

Approximations to the Asymptotic Null Distribution of
na, When the Underlying Population is Normal: y = g/a = 3

x Patnaik Pearson Sum of 2 x2'g P(na,«x)
0.1 .1833 .1021 .1431 .1396
0.2 3277 .3239 .3024 .3072
0.3 4453 . 6627 4376 . 6426
0.4 5417 .5651 .5466 5494
0.5 .6210 6444 .6332 6341
0.6 .6865 7072 « 7019 . 7014
0.7 . 7408 .7879 . 7564 75854
0.8 . 7851 . 7990 . 7999 .7988
0.9 . 8220 .8327 .8350 .8339
1.0 .8526 .8604 .8633 0624
1.1 .8778 .8833 .8864 .885%7
1.2 .8908 . 9023 . 9052 <9047
1.3 9161 .9181 . 9207 . 9204
1.4 9304 «9313 .9336 .9334
1.5 <9423 . 9422 . 9442 9441
1.6 9522 9514 .9530 .9531
1.7 . 9603 . 9591 . 9604 . 9608
1.8 <9671 . 9655 . 9666 . 9667
1.9 9727 <9710 .9718 .9719
2.0 9774 .9755 .9761 9762
2.1 .9812 .9793 .9798 .9799
2.2 <9844 . 9825 .9828 . 9829
2.3 .9871 .9883 .9854 . 9855
2.4 . 9893 .9878 .9876 .9877
2.5 . 9911 . 9895 .9898 . 9696
2.6 «9926 .9911 .9911 9911
2.7 . 9939 . 9925 9924 . 9925
2.8 . 9949 .9936 .993s .9936
2.9 . 9958 « 9946 . 9945 . 9948
3.0 <9968 + 9984 .9953 . 9983
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A similar comparison of approximations results when the underlying population is
Cauchy with location parameter 8 and scale parameter o dw(u) = a exp(-aiu|)du and
the ratio ¥y = o/a was taken over a range of values including unity. The results were
the same as for the normal care.

The cumulant matching approximations were also investigated when the distribution
specified under the null hypothesis is the stadble law of index 4 whose characteristic
function is

®o(u) = exp(-lul’¥ (1-1 sgn u)).

The statistic congidered was the discrete approximation to

na, = n r ®n(u) - dg(u)i? e~ Ulau
-®
given by

P .
nafP) = n L !on(uk) - dg(ug) i ® wy

where uy, and wy, k = 1,2,..., 60 are the (two-wided) Laguerre integration abscissae
and weights. The natural weight function i8 exp(-|ul’%) but exp(-lul) was used for
computational convenience. The cumulants are obtained from (5.8). The agreement
between the asymptotic null distribution given by Theorem 3.1 and the approximation is
not qQuite as good as in the Gaussian and Cauchy examples but still the maximum
deviation between the exact and approximate distribution determined by the weighted
sum of two independent x® variates is only .008 and in the upper decile is at most
.003. Pearson's approximation again performs quite well in the upper tail and would
probabdly de preferred due to its simplicity.

Our computations indicate that cumulant-matching approximations provide a suitable

means for the evaluation of critical values required for use in teets of

goodness-of -fit. Since such approximations do not require excessive computation or
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o3~ analysis, they make the use of the statistic na, feasible from a practical point of view
1458
- %
; v over a wide range of situations.
'::\':
St 8. RATE OF CONVERGENCE
S
D
ot Since the derivation of the finite sample distribution of the variate na, appears
s to be intractable, any inferences to be drawn through observation of this statistic will
R
N ordinarily be based on its asymptotic properties. Inferences could also be based on
x the finite sample cumulants (2.4) and (2.5), obtained in special cases by explicit
S8
\ . integration or in general by numerical integration, and application of Patnaik's
L
SN approximation. This would not be difficult in principle but could be avoided f{f
convergence of the finite sample distributions is sufficiently rapid so that the statistic
3 is of value for moderate sample sizes.
= To see whether the null distribution of na, is well-approximated by its asymptotic
e distribution for moderate n, samples from each of the normal (y=1), Cauchy (y=1),
:;::jj and stable populations considered in the previous section were simulated. Empirical
Ay
-‘ distribution functions of na, (nafP) for the stable case), based on either 2000 or
.::.' 12000 replications, were generated for sample sizes n of 5, 15, 25, and 50.
LSS
o= Comparison of empirical and asymptotic distribution functions was made by the
e
AN
.“.‘z. usual chi-squared statistic applied in each set of replications to test the hypothesis
i
o~ that it was drawn from the associated asymptotic distribution. The probability levels
.:;,:_
:.:j.j corresponding to these tests are given in Table 2. Based on this empirical evidence
N2
pInt the finite sample size distribution of na, 4O seem to converge rapidly, and use of the
5.’_7-_'5 asymptotic distribution when sample size is greater than or equal to 5, say, would
";':::j appear to be justified.
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TABLE 2

P-value of the x? Goodness-of-Pit Test of
Asymptotic Digtribution for Pinite Sample Sizes n

_Case 5 15 . 25 50
Normal .77 .72 .67 .46
Cauchy .58 .94 .36 .30
Stable (%) .32 .80 .61 .23
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